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Models of various complexity for describing the hydrodynamics and heat transfer of particles in turbulent flows 
are proposed on the basis of the chain of equatiOns for the moments of velocity and temperature, obtained from 
an equation for the probability density function. 

In recent years along with local-equilibrium algebraic models for description of turbulent momentum and heat transfer 
in the dispersed phase of a two-phase flow [1-10], ever increasing use is made of differential models based on equations for 
the balance of turbulent energy or the second moments of pulsations of particle velocity and temperature [11-14]. The 

employment of differential models makes it possible to describe nonlocal effects of transfer of velocity and temperature 
pulsations by inertial particles --  the convective and diffusive mechanisms of turbulent momentum and heat transfer. A 
progressive method of constructing the system of equations for the description of dynamics and heat exchange in the dispersed 
phase of a two-phase flow is the employment of a kinetic equation for the probability density function (PDF) of the particle 
velocity and temperature in a turbulent flow [15, 16]. 

The present work refines the equation obtained in [15, 16] for PDF, presents the chain of equations for the moments 
of velocity and temperature, and proposes various schemes of closing the system of equations for the dispersed phase at the 
level of equations for the first, second or third moments. The analysis is performed under the assumption that the characteristics 
of the turbulent carrying flow are known, while the volume concentration is insignificant, and collisions between the particles 
can be ignored. The generation of pulsations of the dispersed phase charai:teristics in this case is caused by the particle 
interaction with turbulent pulsations of the carrying flow which are modeled by Gaussian random functions. 

1. Within the framework of the assumption that the density of the dispersed phase material is substantially larger than 
that of the carrying gas flow, equations of motion and heat transfer for a single particle are written in the form 

__dRpi ____ OPi' dvpi _ tt i (Rp(~),  T)--Opt _~_ Fi(i~p(T), T), 
dr dx ~ (1) 

dO. t (R. (~), ~) - -  ~, 
dx xt 

+ Q (R. (~), ~). 

Expressions (1) represent Langevin-type equations, since velocity u and temperature t of the carrying turbulent flow, 
entering into them, are random functions. To go from dynamic stochastic equations (1) to the statistical description of the 
particle distribution in velocity and temperature we introduce the PDF 

P (x, v, r "~) = ( p > = ( 6(x - -  R v ('0) 6 (v - -  v v (T)) 6 (~ - -  Cv ('~)) >, (2) 

where averaging is performed over the realization ensemble of random velocity and temperature fields. 
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Differentiating (2) with respect to time, in view of (1), we obtain the following equation for PDF: 

OP 0 ( U~--va:  i O ( T - ~  {c- 
0"~ ~ Ovk "% / , 

1 O<u~p> 1 o< 'p> 
= O . P =  

~u OOh 

(3) 

The correlators (N'p) and (t'p) in Eq. (3) are determined using E. A. Novikov's relation [17] for Gaussian random functions: 

6p (x, v, t% -c) >dxld'q-Jr- 
< "; p > - !'.i < "; (• . i  .~ (~1, ~1t > ( ~.~ (xl, ~,i 

+ [ i  <"; (", ' )c  (xt, ~1)>/@ (x, v, o, .) )dx ,e . .  
- ~  \ 5 t ( x . . % )  - 

(4) 
( t 'p)  =.[ j"  t'(x, ~)t'(xl, "Q) / dp(x, v, ~, "v) Xdxld.q+ 

\ 6t (X1, T1) / 

/ 6p(x, v, ~, T)>dxld .q ,  @ ff !" < /~h (Xl, ~tl) ff (X, T) > \ (~Uh (X1, "~1) 

where 

/ t p ( x ,  v, e , ' 0 \ _  0 ( p ( x ,  v, e,  "~) 5R~j('0 \ _ _  
\ 6uk(xl, "~) / Oxj 6uk(xl, "q) / 

0 6%j ('c) 0 

6uk (xl, T1) / Ot~ 

• 6% (~) ,, 

6uk (x.  "q) / ' 

/ 6p(x, v, a}, "r) \ _  0 
\ ~t(• / a,~ @ ( •  ~% (~) \ 

6t (x~, "q) / " 

To find functional derivatives in (4), use is made of the solutions for the equations of motion and heat transfer of a 

single particle (1): 

R~i ('0 = .f vp~ (~) d~, 
0 

Upi(.f;)--. j [  1Ai(~p(T'I)' "gl)-@Fi(.p(T1) , zl)j exp ' 
T u I. Tu 

~c .... "r: l t d'Q. 
T~ t / 

(5) 

By applying a functional differentiation operator to (5) we obtain a system of integral equations for determining the 
functional derivatives: 

6Rv~ (x) = 6 i ] [ l - - e x p  ( "~ - -  11 ) 3 6 (Xl - -  Rp (TI)) Yi (T - -  TI) - [ - 
~'~./(X 1, "171) , Tu 

(6) 

i t] + 1 - -  exp -r - -  x~ 0 ;, r,, , ~ [u~ (1% (r,,.), to.) + T~F~ (llp (~:o.), ~..)1 • 
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, 

• 5Rp,~ ('r~) d.r2 ' 
5uj (xl, "q) 

5vp~ (J ( T1 exp ) 6 (x, --- Rp ('h)) 'q ('r -- 'rl) + 
5u j (x .  "q) % ', % . 

Xu .q T,u ] OXn 

X 6 R w  ('r2) d'c,,, 
8u~ (x.  ~) 

5if/, (I:) . 1 V exp ( x---r= ) 
6u~ (xl, 'h) ~t % "rt , 

(7) 

(8) 

O 5Rp~ ('c,J d'c2, 
• 3x,----T- It (Rp (z2), ~)  + xtO (P~> (%), %)1 aui (xj, "h) (9) 

5{}p(T) _ 1 exp ( "c--" h )5(x~__R~(x,))n(T__x,)" 
6t (x~, 'h) Tt "~t 

With the aim of obtaining closed expressions for the functional derivatives and correspondingly for the correlators (u i,p/ 
and (t'p) in [16] all the integral terms in (6)-(8) were excluded from consideration. However, the influence of these terms in 
nonuniform flows may be substantial, so in contrast to [16] we will disregard only the integral term in (6) and will 
approximately represent the integral terms in (7) and (8), in view of (5), in the form 

"[~ ") OXn SaY (Xl, "[1) 

T 
.i' " = 0% ( r .  (~), 0 6G,.  (~) 

"r t Ox,, @ s (xl, "q) 

(lO) 

In view of (6)-(10), expressions (4) will take the form: 

u; p > = - . .~, ,g, ,  < u; .',, > ~ Ox. 

• OV,~ c3P O0 OP '~ 

' Oxl:  Ov~ + Oxt~ Off ) 

OP ~  f , .  < . ;  r > . 
- f" < "; "~ > ooh oe ' 

( t'p ), . . . . .  "r,,g,,t ( u~ t' > ( O--~h' OP + _ _  

OP 
-- f , ,~ < . ; , t '  ) 

Ovk 

where the coefficients f and g are found from the relations 

OV~ OP O0 OP '~ 

J Oxh O~ 

OP 
f, < t'~ > = = - - ,  #d 

g t t  

"~,. < ul (x, "0 u;, (x, ~) > o 

- -  exp ( 

1 
f u =  T,, < u;(x, �9 ) s (x, ~) > 

x exp ( 

< uj (x , -0  u;, (IG (T~), -q) > [ 1-- 

~ - - ~ 1 ) ]  d n , r ~  

0o 
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0 

"~ --- "q ) d'q, 
"[u 

(11) 
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ftu I 

~O'Ul ~ . ~ . ~  

f: -- 
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• exp ( 

1 
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- -  exp ( 

1 
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• exp ( 

1 

T, ( t' (x, T) t' (x, ,-c) > 
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, " c t  

ao �9 

.[ < u~ (x, "c) t' (!~, ('cO, ~)  > x 
0 

" r  - -  % ) d% 
"ct 

oo 

f < u; (~, ('cO, q) t' (x, "c) > [ 1 - 
0 

"c --.ru T'I ) ] d'cl, 

i (  ul (Rp ('ca), ++c+.) t' (x, 1:) ) X 
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t ( t' (x, ~) t' ( ~  (~), "c,,.) ) • 
0 

As can be seen from these relations, tbr calculating the coefficients of particle entrainment by turbulent pulsations of 
the carrying flow f and g one needs to know two-time correlation functions of velocity and temperature pulsations of the gas 
along the particle trajectories. The Lagrangian integral scale of turbulence Tu, characterizing the attenuation of energy-intensive 
pulsations of the carrying flow in time, may be taken as the time of particle interaction with the turbulent pulsations of the gas 
in a first approximation (with no substantial averaged interphase slip). In this case the coefficients of entrainment turn out to 
be functions of parameters of particle sluggishness t2 and gt. 

Substituting (11) into (3), we obtain the closed equation for the PDF of particles in a turbulent flow 

OP 
& 

_+& > 3_L_p +( t,,, + 
"cu Oviavh \ zu 

O2p .] 7, (, O~p 
OxiOvh 

§ ":'" g,t ( ul t' ) ( O~P 
"ct \ 

OP __~vh ( U~--v+ - - + v k - - §  
OXh 7: u 

a ( T - - e  . q _ q ] p _  + & } P § a ~  - c ~  

) ' a~P ft • f "  ( ukt' > , - - -  

- - +  8xk 8v~v~ + 8x~ 8vi8r 

OV~ O~P c)O O"P 
Ox~ Ov~Off + 8xh a~  i" 

(12) 

Ignoring the last two terms on the right side, (12) becomes a Fokker-Planck-type equation in the theory of Brownian 
particles. The role of the last two terms is especially essential for small particles (g~ = gut ~ 1/flu a s  flu ~ 0 ) .  Equation (12) 
differs from that for the PDF obtained in [16] by the presence in the last two terms of the components containing spatial 
derivatives of the averaged velocity and temperature of particles. Due to the presence of these components the relation (9) 
becomes integrodifferential. 

2. From (12) the equations for the moments of velocity and temperature of the dispersed phase can be obtained. The 
equations for the averaged concentration, velocity and temperature of particles coincide with those obtained in [16] and have 
the form: 

O0 80Vh 
o----~ + Ox~ 0, (13) 
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OV----!-4- V~ aV~ _ O<v;v;~) 4- U i - - V l  4 - F i - -  D~n OlnO 
aT, OXh OXh ~.. % % c?xk (14) 

00 D~ a in �9 
4- Vh ~ + (2-- (15) 

oo a< v#O' > T--O 
c)x~ c3x~ "r, t "ct Oxt, 

Here 

1 S f v i P d v d #  , O : :  1 

__1 i f v i v ; P d v d e '  ( v k ' ~ ' ) =  t ( i ' v ;~ 'PdvdO,  < v; vi" ~ = o ,,. - ~  .~ 

z) .  = -~ ( < v; v; > + e .  < . ;  . ;  > ), D~ = ~t < v;#' ~ + "~,e,,~ < u; t' >. 

It is pertinent to note that, owing to the presence of the second components (containing the coefficients g), the turbulent 
diffusion tensor Da, and the diffusive heat transfer v e c t o r  D ~  t with decreasing particle size tend to finite values rather than to 
zero (D~, - , .  T L ( u  i ' u k '  1 and D~ t --, T L (Uk't') as f/-'* 0 ) ,  thUS providing the limiting transition to a description of diffusion of an 
inertialess impurity in a turbulent flow. 

The equations for the second moments of velocity and temperature pulsations have the form 

O ( v~vi 
&c 

; 

-~ ..... {L, < .; .) 

�9 r 

01: 

�9 �9 r �9 , 

O ( v~ v i> 1 O0 ( v~ v/ vk 3 § Vk.. + 
c)x~ �9 Ox~ 

- < v N ;  > ), p , = - (  < ~ , ;v ;  o v j  

Oxa 

- ~  V h 

ax~ 

OVi 
Oxh 

1 

T~ 

0 ( 0 '~ 
+ V h  & 

~0 2 
: - 2 < v ~  r  k 0 x  - +  T t 

- -  ,, V/~ .) 

1 O0<v~v;~'  
�9 = - -  < v~vk > - -  - 
�9 Oxk 

4-( +jo, ) <.;t'>- 
, '17 u ,t" t / 

_ _  ~_ ~__._L_) "~, < o ; e '  >, 

a ,o,"-' ) + 1 O~(vs '~ > 

axe, �9 Oxh 

( h ( t  ,~- ) _ ( # , ~  >). 

-- P~J 4- (16) 

aV i ', + < v; 

ao 

Ox~, (17) 

(18) 

The terms related to the last two ones in the equation for the PDF (12) are missing in Eqs. (16)-(18). From these 
equations there follow correct limiting relations as relaxation times of particles tend to zero - the second moments of velocity 

and temperature pulsations for inertialess particles are equal to the corresponding moments of pulsations of the carrying phase 

(t'--, 1 when fl ~ 0). Unlike (16)-(18), the equations for the second moments, given in [15, 16], contain additional terms which 

are due to the first components in the last two terms of Eq. (12) and describe additional generation of pulsations in a 
nonuniform flow, these additional terms persisting as the relaxation time of particles tends to zero and thus resulting in the 

emergence of special features in the behavior of the second moments of particle velocity and temperature pulsations with fl --, 
0. The introduction into the equation for the PDF of terms directly related to the nonuniformity of the averaged velocity and 
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temperature fields of the dispersed phase made it possible to eliminate redundant components in the equations for the second 
moments of pulsations and to provide a correct limiting transition for small particles (~ I 0). 

Equations for the third moments of pulsations of particle velocity and temperature are written using the assumption 
of the near normal pulsation distribution law. In this case the fourth moments of pulsations can be approximately expressed 
as the sum of the products of the second moments, and the equations for the third moments will take the form: 

+ G + < vlv}v'~ > -av___~ + 
& Ox, 3x,~ 

+ 

�9 �9 �9 3 V j  , 3V~ 
+ ( v~v~v. ~ ~ + ( v~v'~v~ > - , 

Oxn 

T,u OXn ~u C)Xa 

c3<v~v,~'> +V~ 3< v~v/@'> 
O'r O& 

+ Di,, O(v}v'~) + 
T u OX n 

+_3 <v;v;G>=o, 
T u 

�9 ~ , OVs +<viva6 ) - .  
Oxh 

§ 

(19) 

+ 

Djh 0 
"T, u 

0.-7 + < _ + > + Oxk "G~ Ox~ 

o' , o< o ; o ; ,  ,, z l ) , 
Tt O& ' / ', ) : =  O, 

T u T t , 

o < v ; , ~ ' ~  a < v ; e  ,~ , , ,  & ~ + V ~  > b(v~ff,~) OVi + 2 < v ; v k ~ ' )  O_O__O ~_ 
Oxk O& Ox~ 

"L~ 3Xh % Oxk 

T u  T t , 

(20) 

(21) 

3. With the known characteristics of the carrying turbulent flow the system (13)--(21) gives a closed description of 

momentum and heat transt~r in the dispersed phase at the level of equations for the third moments. To simplify the calculation 
procedure and to realize the description of hydrodynamics and heat transfer at the level of equations for the second moments, 
assuming Eqs. (19)-(21) contain small terms, determining a time variation, convective transfer, and generation of the third 
moments of pulsations at the expense of the gradients of the averaged velocity and temperature, we obtain the following 

algebraic relations for the third moments: 

1 [ 0 ( v; v~ 

Oxn 

1 [ 
%D,I~ 

k 

v Y  ) - 

§ Dj,~ 0 ( v;v~ ) § (22) 

-}- "rtDik 
a< vi~ '  > 

ax-~ 

0 v;@' ) 
c]xh 

_b x~D t O (vi  v; ) ) 
OX k 

1 

2"r q- % 

§ 

( % D i a  O ( @'~ ) 
, ~X~ 

-k 2z~D t 3 ( v~ if' ) "~ 
Oxk / 

Q 

(23) 

(24) 
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It is evident from Eqs. (19)-(21) that the exactness of the relations (22)-(24) increases with decreasing particle relaxation 
times. As the relaxation times tend to zero, expression (22) becomes the relation proposed in [18, 19] for determining the third 
moments of velocity pulsations in a single-phase medium. 

The system of Eqs. (13)-(18), in view of the relations (22)-(24), gives a closed description of momentum and heat 
transfer in the dispersed phase at the level of equations for the second moments. A further simplification of the calculation 
procedure can be associated with the replacement of the system of equations for the second moments of velocity pulsations (16) 
by one differential equation for the dispersed phase turbulent energy 

Okp ~ _ V ~ O k ~ . +  1 c3 ( ~  <v;v;v;~) _ Pa~ 2 (25) 
0---~ ' Ox~ q) O& \ 2 2 + .  (/~k - -  G) ,  "r 

where in accordance with (22) 

vh v~ vi ) __ 1 ( Dhn 
2 3 \ Ox,~ 

0 ( 0~ vk > dkp (26) 

For going from the system of differential equations (16) to that of algebraic equations use is made of the Rody 
transform, which has become wide-spread for single-phase turbulent flows [20]: 

o oi o5 > § o < > 
3"v dx~ 

+ 1 0 r  = 
(I) OXh 

, 0 (. 
q) O& \ 2 j 

(27) 

From (16), (25), and (27) we obtain the following system of algebraic equations for determining the second moments 
of velocity pulsations: 

2 kS~j) + % 

( v i v / )  := -7~ kp6 H +  kp 
[~ + *uPh~/4 

(28) 

Equations. (13), (14), and (25), with allowance for (26) and (28), give the description of hydrodynamics of the 
dispersed phase based on a differential equation of turbulent energy balance and on the system of equations for the second 
moments of velocity pulsations. To obtain an explicit expression for (vi'vj'), additional simplifications can be made, for which 
purpose we take the "isotropic" representation for the generation tensor: 

Plj 

and, ignoring the left side of Eq. (25), assume 

~ + o v j )  
3 ~,. Ox3 O& ] 

k~ = [~k + "r~P~/4. 

Allowing for the taken relations, from (28) it follows 

< vi v i ) = 3 ~ 3 

3 Ox---~. + Ox~ 3 Ox~ 

(29) 
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The second and the third terms in (29), which determine anisotropic components of the t ensor  (Vi'Vj'}, are caused by 
the direct involvement of particles in pulsation motion of the gas and by the generation of turbulent pulsations from the 
averaged motion of the dispersed phase; the contribution of these terms is determining for small and large particles, 
respectively. Thus, assuming in the approximation of the second term, that for small particles the averaged velocities of the 
dispersed and carrying phases are equal V i = Ui, expression (29) can be presented as the Boussinesq relation 

�9 , = _ _ _  ( OV~ OV~ 2 0Vh 8 u ) ,  2 kv6i j - -v  v + (30) 
( v ~ v  i > 3 , Oxj Oxi 3 Oxh 

where the turbulent Viscosity factor is equal to 

(31) 

With allowance for the "isotropic" representation (vi'vj') = 21q, c5~/3, the diffusive term (26) in the equation of turbulent 
energy balance (25) is also simplified: 

. . . .  T~ ( G  § g~le) Okp 
2 27 Ox~ 

The simplest calculation procedure is obtained if in relation (29) or (31), for determining the turbulent energy of 
particles, the equilibrium (valid, as evident from (25), for a steady-state uniform flow or for small particles) relation lq, = fk 

is taken. In this case (13) and (14), in view of (29) or (30), give a description of momentum transfer in the dispersed phase 

at the level of equations for the first moments. 

The system of differential equations for a turbulent heat flow (17) may also be reduced to a system of algebraic 
equations if unsteady, convective, and diffusive terms are disregarded: 

< v; > - + 
Tu @ Tl 

q u i t ' >  

+ < v;,o,' 

% %  { , , , d O  

T~ -~- T: I " OXj, (32) 

The first and the second terms in (32) are due to the particle interaction with turbulent pulsations of the gas and to the 
generation of pulsations from the averaged motion of the dispersed phase; the role of these terms is determining for small and 

large particles, respectively. With the aim of obtaining an explicit expression for <vi'O'), the last component related to the 

averaged velocity gradient is to be neglected in (32). In this case, with allowance for the "isotropic" presentation (vi'vj') = 

215,6i/3 and the equality of the averaged temperatures of small particles and g~is 0 = T, expression (32) can be presented as 
the Fourier law: 

< v; 9 ' > = : -  I (-cdu, G] 0O __ 
" ~ ('r,~ " %) Pr T + 3 ( ~  d-' T~) �9 8X~ 

V~, 06) 

Prp Ox~ 

(33) 

where the turbulent Prandtl number for the dispersed phase is equal to: 

Prt~ = 
(r~ + ~t) ( f ~ ,  + %kv!3) 

According to (34), there exist the limiting relations 

(34) 

Pry ~ PrT ~ when ~ ~ 0, Prp --+ - -  "[u -~- "~t. when ~ ---+. oo. 
2r~ 
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The algebraic expression for the intensity of particle temperature pulsations can be obtained when the left side in Eq. (18) is 
disregarded 

(~'~ ) = f t ( t  '~ - - ~ t ( v ' h O ' )  dO_O__, 
O.~,'t~ (35) 

or in view of relation (33) 

,i-ff '~ ) = : / : t ( t  '~ 
~v O0 ?,0 

~- ',c t - -  (36) ! 

Pr~ dxk dxl~ 

The first term in expressions (35) and (36) is determining for small particles, the role of the second one grows with 
increasing particle size. 

Thus, the presented models enable one at a different complexity level to describe the hydrodynamics and heat transfer 
of the dispersed phase in turbulent flows. 

NOTATION 

r, time; Ph,, Vp, 0p, coordinate, velocity, and temperature of particle; v i, Vi, vi', 0, O, 0' ,  actual, averaged, and 
i 

pulsation components of velocity and temperature of dispersed phase; ui, U~, u i , t, T, t', actual, averaged, and pulsation 
components of velocity and temperature of carrying flow; F~, external force; Q, density of internal heat sources in particle; 
ru, % times of dynamic and thermal relaxation of particle; fu = ru/Tc, fit = rt/Tc, parameters of dynamic and thermal 
sluggishness of particles; I,, volume concentration of dispersed phase; k = (ui'uj')/2 , turbulent energy of gas; u T, Pr v, turbulent 
viscosity factor and turbulent Prandtl numbers for gaseous phase; tS(x), Dirac delta function; 7/(x), Heaviside unit function. 
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